存在的立方体,按照这个思路来讲, 只要再加一个w轴, 让w轴和x,y,z轴分别垂直,就可以构建数学上的四维几何。
可是普通人想象不到w是如何摆放才能和那三个轴如何垂直。这个是复数就派上用场了,利用复数来进行降维——在一个二维实空间的每一个点都可以唯一对应到一个复数上。
假设在二维空间上的几何体,也就是平面几何被称作是是a2, 利用c1来代替a2(平面几何),利用c2来代表a4(四维超立方体),这样就可以把一个本来无法想象的立方体降维到了平面图上,在这张图上,每一个点(x,y)代表两个复数,也就是四个实数。想要感知超立方体,就可以c2在平面上的变化(线性变化和非线性变化)来感受a4的变化,根据绘制的平面图再来想象超立方体的存在就很容易了。
大大降低了对空间思维的要求,转化成了一个数学问题。
这本书上就详细的介绍了这种转化方法,为了让人更好的理解,作者在这本书上用绘制地图的方法来给他们演示。
众所周知,地球是一个无限接近于球的几何体,我们就生活在这个球的表面,如何把球的表面绘制成一个二维的平面地图,这需要用到一个方法。
——把地球投影到平面上。
球极投影。
这个过程也可以理解为了a3-到a2的降维过程。
洛叶悠悠叹了口气,高疏道,“怎么了?”
“三维生命不可想象四维的存在……”她把书放到前面的小桌上,“你觉得我们的存在都算是低维生命吗?”
高疏:“……”洛叶已经不止一次表现出对维,对群的热爱了,现在她再一次提到维度,他一点都不觉得意外,可是却意外于洛叶不纠结于数学上的维度上了,现在纠结的有些像是物理学上的维度。
“为什么忽然想说这个?”
他看了看她眼前的书,“是书上讲到的吗?”
洛叶确实有些想和人交流了,睫毛轻轻的颤动一下,如同蝶翼一般,“……不全是,还记得我们曾经讨论过的迷宫吗?”
高疏当然记得,“你的迷宫设计出了问题吗??”
“——不是,实际上它已经完成了。”在经过了数个尝试,否决了无数的想法之后,她的迷宫终于完成了,从目前来看,一切和她最初设想的一样,只是还要看看后续——
被困在迷宫的人可不少,而且大祭司还有最初找到她别墅的人,实力手段都有,如果他们困在迷宫在迷宫的能量消耗完之前还没有出来,她就可以肯定的回答,它不但完成了,还成功了。
这也是她没有杀了迷宫内所有人的原因之一,留着他们才好继续做实验。
“这只是在我设计的时候,产生的一点想法。”
“你看过《平面国》吗?”
“看过。”
《平面国》算是维度上的一本入门读物,在洛叶三番两次的提到维这个概念后,他找来看了下,洛叶提到了它,他忽然明白了洛叶为什么发出那样的感慨。
由低维朝着高维探索,是一个非常艰苦的过程。就以《平面国》中的蜥蜴为例,他们生活在二维空间,也就是一张纸上,他们没有“高”这个概念,当一个三维的球穿过二维的纸的时候,他们依旧无法感受到“高”这个概念,他们看到的就是一个圆由小变大,然后又由大变小的过程。
依照这来想象,我们生活在三维空间,一个四维立方体穿过穿过我们的空间,我们看到的也就是这个超立方体不变变化的过程,而无法想象超出于“长宽高”这三个维度的存在。
所以现在展示所有超立方体都不不能算是真正的立方体,而是超立方体的投影。
我们无法想象真正的超立方体是什么样子,因为我们的世界不存在这个“维”。
我们生活的空间限制了我们的想象。
高疏想了想,“我觉得单纯用维度来表达,很不恰当,我也不认为我们是低维生命。”
“哦?”
“无论是二维的蜥蜴还是三维几何体,都是存在于这个宇宙内。”高疏和洛叶这种对数学走火入魔的不太相同,他看的书更杂一些,而且他对超立方体真的也就是欣赏而已,“这也可以说是一个整体,当一个物体无限放大下去,看到的都是立体的,不存在于简单的平面,立体的概念,这也就不能说是简单的维。”
所以也就不能用二维想象三维的方法来思考是否存在更高的维度,当然了,数学上的维度可以存在,但是现实中去想是否有四维的生命体根本没有必要。
或许物理上的四维——时间轴是存在的,四维生命体可以穿梭于时间长河,但是用数学上维度来思考就没有多少意义了。
他这番话再次证明了他本身是个很务实的人。
洛叶不置可否,“你说的是另一种观点。”关于高维生物的讨论,从来都是观点繁多,她一点不以为意,她还看到过一个观点,这个观点是人虽然
喜欢数理王冠请大家收藏:(m.fubook.win),腐书网更新速度最快。